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Abstract -
Safely waking up a robot at an unknown location and

subsequent autonomous operation are key requirements for
on-site construction robots. In this regard, single-shot global
localization in a known map is a challenging problem due
to incomplete observations of the environment and sensor
obstructions by unmapped clutter. In this work, we ad-
dress global localization of sparse multi-beam LiDAR mea-
surements in a 3D mesh building model, a typical setup for
construction robots. Our solution extracts and summarizes
planes from the LiDAR scan and matches them to the build-
ing mesh. We evaluate different options for the registration
problem, and evaluate the system on simulated and real-
world datasets. The best performing system uses a combi-
nation of the Randomized Hough Transform (RHT) and a
modified version of the Plane Registration based on a Unit
Sphere (PRRUS) algorithm. For sparse and noisy robotic
sensors, our system outperforms contemporary systems like
GoICP by a large margin.
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1 Introduction
Localisation in 3D building models with onboard sen-

sors is a necessary skill for autonomous construction
robots, and it finds application even outside of construc-
tion tasks e.g. for indoor service robots. In this work, we
consider a particular part of the localisation task, the robot
wake-up problem: A robot has to find its location in a map
without any prior knowledge, e.g. because its localisation
routines diverged or it was just switched on. While it may
be safe for a small household robot to blindly explore and
risk collisions while performing the localization, this is
too dangerous for e.g. heavy construction robots. Ide-
ally, these could perform one-shot global localization at
the location of wake-up. This is a difficult problem as
the robot may only partially observe the environment and
have incomplete information in its map, e.g. the build-
ing model only represent the raw state of a environment
without equipment, temporary structures, or people. For-
tunately, it is sufficient to find an approximate guess of the
actual robot pose in a global map. Local methods (that

require such an initial guess) then enable fine registration.
In this paper we consider the problem of 3D global lo-

calization in meshes, which is a common representation
for buildings in architecture and can be easily and automat-
ically created from ubiquitous 2D floor plans. However,
they do not contain any visual information, ruling out vi-
sual global localization such as [1], and also generally
do not contain the necessary information for semantic lo-
calization methods [2]. Better suited for the presented
problem are methods based on 3D geometry [3, 4, 5].
Unfortunately, as these were designed for localization on
robot maps instead of building meshes, we found that
they do not gracefully account for data mismatches due to
clutter, have long processing times, or are prone to con-
verge to (wrong) local minima. We investigate a solution
to localize sparse LiDAR scans in meshes using a plane
extraction and matching algorithm. We propose and eval-
uate different methods for the individual components of
such a localization system, and show its superior perfor-
mance against state-of-the-art methods operating on point
clouds [3] and volumetric features [5]. Our experiments
highlight in particular the difficulties of on-board sensors
like sparse LiDARs, as opposed to e.g. dense 3D scanners
used in surveying, and show a need to use specific meth-
ods for such sensors. Overall, we present the following
contributions:

• Heterogeneous global localization system to localize
sparse and noisy 3D point clouds in 3D mesh models

• A modified version of the PRRUS algorithm de-
scribed in [6], which does not maximize the best
alignment of two sets of planes by checking all possi-
ble assignments, but assigns three orthogonal planes
in the scan to the map planes and checks this assign-
ment for consistency

• An extensive ablation study of our design choices on
simulated and real-world data

2 Related Work
The problem of globally localizing between 3D data is

well studied in literature. Existing approaches can be cat-
egorised into local descriptor-based approaches, Iterative
Closest Point Algorithm (ICP)-based approaches, Neural
Network-based, object-based, and topological approaches,
e.g., using plane-matching.
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2.1 Registration based on Local Descriptors

Methods facilitating local descriptors typically aim to
extract features of selected keypoints from point clouds to
form correspondences and estimate transformations [7].
This is inspired by the 2D approach well studied in image-
based place recognition, using local descriptors such as
SIFT, SURF, FREAK, BRISK, BRIEF and ORB descrip-
tors [1]. 3D approaches are e.g. (I)FSD, FPFH and (I-
)SHOT, forming compact volumetric descriptors. How-
ever, these features perform best on dense point clouds and
only to a limited extent on sparse point clouds [8]. The
back-end for calculating the relative transformations is typ-
ically based on Random Sample Consensus (RANSAC) or
defined as a cost minimization problem[4, 9, 10].

2.2 Iterative Closest Point Algorithms

Numerous variants of ICP exist for the local refine-
ment of a localization given a good inital guess [11].
Furthermore, several extensions were proposed to apply
the ICP algorithm to global localization. Fitzgibbon [12]
use the Levenberg-Marquardt [13] optimizer to escape lo-
cal minima which are the primary source of ICP fail-
ing on arbitrary global localization tasks. Boehnke and
Otesteanu [14] perform a coarse-to-fine alignment to find
a good prior for ICP. WP-ICP [15] pre-processes the
raw data into sets of corner and surface points, which are
aligned separately. GoICP [3], which we evaluate in our
experiments, uses a branch-and-bound scheme to divide
the space of all transformations along upper and lower
bounds[3]. It also guarantees the finding of a global min-
imum given sufficiently long run-times.

2.3 Neural Networks in Registration

Ratz et al. [16] train a 3DConvolutional Neural Network
(CNN) to globally localize sparse 3D LiDAR scans in
dense point cloud maps. In general, trained descriptors or
matchers may lead to strong dependence on the training
data, with unpredictable behaviour outside of their trained
domain. Scan2CAD [17] uses a CNN to match candidate
keypoints between RGB-D scans and meshes.

2.4 Object-based Registration

Several object-basedmethods use registration ofmeshes
for localisation. Feng et al. [18] match and align objects
with a database of class-representative object meshes, but
requiremultiple views. Furtherworksmatch line segments
extracted from a scan. He and Hirose [19] use information
about the geometric relations between lines in an inter-
pretation tree for matching, whereas Micusik and Wilde-
nauer [20] match known structures of lines with known
structures using efficientmatching procedures. Wang et al.

developed a long-range localization procedure specifically
for a shopping centers using names of visible stores [21].

2.5 Plane Extraction and Matching

Another approach involves the extraction of planes and
the calculation of the relative transformation between the
data by plane matching. To extract planes from a scan,
[22] use a 3 dimensional version of the Hough Transfor-
mation. The authors also introduce various designs for
the accumulator, which is crucial for the quality of the
plane extraction. Fernández-Moral et al. [10] and Pathak
et al. [6] use a region growing algorithm for the same task.
Plane Sweeping [23], derives a transformation by con-
structing an axis of rotation through randomly selected
points and generating a histogram from it. After extract-
ing the planes, they are then interpreted by e.g. detecting
and reconstructing openings [24], calculating plane fea-
tures [10] or labeling occluded regions on the wall [25]
to obtain a more descriptive representation of the planes.
Fernández-Moral et al. [10] then construct a graph from
the planes and the relative distances between two planes
and match subgraphs with the help of a cost function.
We take inspiration from these works to develop a com-

plete pipeline that includes plane extraction from the scan
and matching to the mesh of the building model.

3 Method
The presented system (Fig. 1) localises sparse 3D Li-

DAR scans in 3D building mesh models. In the following,
we describe how the LiDAR scan is preprocessed, planes
are extracted from both the building mesh and the scan,
subsequently matched to find a global localisation, which
can finally be refined by local ICP based registration.

3.1 Point cloud filtering

LiDAR data from real environments is subject to differ-
ent kinds of noise and outliers. We apply a voxel centroid
filter that yields even density of the LiDAR scans, by vox-
elizing data in a fixed grid and merging points within each
voxel into the centroid of all contained points.

3.2 Plane Extraction

Extracting the planes from the 3D mesh model is
straightforward, i.e., merging neighbouring mesh cells
based on parallel surface normals. However, for sparse
3D LiDAR scans, it remains a challenging problem. Due
to the sparseness of the scans, the scene can no longer be
completely reconstructed, which also makes it difficult to
filter out clutter and noise. We evaluate different options,
i.e., RANSAC-based[27], region growing-based [28], and
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Figure 1. Software system overview of the global localization system: First the raw LiDAR scan input and
mesh model are preprocessed in a filtering step and a mesh summarization respectively. On both data, planes
are extracted using RHT, and consequently matched. Using the correct assignments, the system outputs the
transformation between scan and model for the real robot [26].

RHT-based plane segmentation [22]. Our final choice is
RHT, we therefore only briefly describe the other options.
In RANSAC-based plane extraction, hypotheses about

the planes contained in the scan are made by consider-
ing only a small subset of the points and calculating the
plane parameters from this. These are then checked for
consistency with the remaining points in the scan. Several
iterations are carried out and finally the solution with the
most inliers returned. The run-time depends on the size of
the considered subset that is used to derive the hypothesis,
the inlier ratio and the number of LiDAR points [29].
Region growing is stated to show low sensitivity to

noise [28], and is therefore an attractive option for the con-
sidered problem. Seed regions are determined, which are
then checked for local coplanarity, e.g., by using RANSAC
or areas of low local curvature evaluation. Then, points in
the neighbourhood of the considered subset of LiDARdata
points are checked for their association to the correspond-
ing plane and added to the current subset as further plane
inlier points. Efficient implementations facilitate a kd-tree
for nearest neighbor search [28]. Planes can be further
regularized comparing the calculated parameters of the
detected planes to correct the found parameters towards
parallelism, orthogonality or coplanarity.
RHT is a subtype of the 3D Hough Transformation and

is characterized by single data points voting for single
geometric primitives (in our case planes) instead of voting
for all. Amongst different Hough Transformation variants,
RHT is a good trade off for high efficiency [22].

3.2.1 RHT Voting Phase

RHT randomly samples three points ?8 8 ∈ {1,2,3}
from the point cloud and checks for their proximity. This
proximity metric prevents detection of wrong planes ly-
ing crosswise in space. The plane defined by these three
points is then found as

=?;0=4 =
(?2 − ?1) × (?3 − ?1)
| (?2 − ?1) × (?3 − ?1) |

(1)

The norm in the denominator is used to filter out sets
of three points arranged on a line. Next, the plane pa-
rameters in 3D Hough space d ∈ R≥0, pitch k ∈ [−c, c)
and yaw \ ∈ [0, 2c) are determined. If the scalar product
?1 · =?;0=4 is negative, the plane normal is flipped before
calculation of \ and k. Votes for plane parameters are
collected from the samples into an accumulator. The ac-
cumulator describes an arrangement of discrete bins, each
of which represents a point in the 3D Hough space. After
the plane parameters of the given sample ?1, ?2, ?3 have
been determined, the bin representing the closest value in
3D Hough space is selected and its vote is incremented.
Then, the next voting cycle starts with sampling three
points. Since many points are discarded due to the re-
quirements of the sampled points, good plane extraction
results require a high number of voting cycles.

3.2.2 RHT Evaluation Phase

After several voting cycles, the bins with highest voting
scores are selected from the accumulator. We assume a
uniform distribution of reference points, therefore param-
eters associated with these bins correspond to the most
dominant planes. We iteratively perform RHT, remov-
ing already detected planes, enabling detection of less
dominant planes in subsequent iterations. Due to noisy
LiDAR scans it may happen that reference points from
the same plane can be assigned to different bins with
similar parameters. Therefore, the same plane may be
detected several times. To prevent this, a Non-Maxima
Suppression is implemented, which is applied to the
bins of the maximum values and their neighbors. The
neighborhood of a bin A is defined as all bins B with
max{|d� − d� |, |\� − \� |, |k� − k� |} < : . Votes in the
neighborhood are credited to the bin under consideration.

3.2.3 RHT Accumulator Design

Choice of the accumulator has a large effect on the plane
detection performance due to the different quantizations of
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the 3D Hough space. This choice is largely influenced by
the LiDAR scan characteristics and the specific point sam-
pling pattern. Here, we consider array and ball accumula-
tor [22]. While array accumulators are easy to implement,
they come with the downside of largely differently sized
bins. Especially small bins at the poles lead to fragmented
plane segmentation in \, however, non-maximum suppres-
sion can reduce this effect. The ball accumulator on the
other side counteracts this effect by applying a binning that
couples \ and k resolution, according to:

\ ′k8 =
<0Gk* (k)
* (k8)

· 1
#\

=
1

#\ · 2>B(k8)
(2)

where * (k) is the accumulator circumference for a spe-
cific k and #\ the number of bins of a comparable array
accumulator in the \-direction.

3.3 Plane Matching

After plane extraction, the extracted two sets of planes
are matched. The algorithm developed in this paper is
inspired by PRRUS [6] which aims to identify the geo-
metrically most consistent assignment between two sets of
planes. Our approach differs from the original PRRUS,
i.e. restricting the plane assignments by a set of rules.

3.3.1 Assignments Generation

To generate the initial set of candidates, groups of planes
are gathered from the model and the scan. These groups
consist of three planes with approximately orthogonal nor-
mals. Then all possible combinations between the groups
of the scan and those of the model are formed. Since
the direction of the normals can be ambiguous, we also
combine all (6) possible permutations of the groups. If no
assignments of two groups of orthogonal planes are found,
the algorithm fails to find the exact pose and terminates
with a corresponding message.

3.3.2 Calculation and Consistency of Rotations

The set of candidates obtained from the previous step
is further reduced by consistency checks with regard to
rotational alignment. The rotation is determined by two
scan plane normals and the corresponding model plane
normals. This problem is known as Wahba’s problem.
Solving this problem generally requires matrix inversion,
but since we only consider two vector pairs the problem
can be solved efficiently [30]. We introduce the conven-
tion that plane normals in the plane extraction and the
map planes point outwards with respect to the robot pose.
Therefore, we check for consistency of the rotation de-
termined above with the third plane normal of the group
by rotating the third normal from the scan group =B20=,3.
If =B20=,3 · =<0?,3 > X, the rotation aligns =B20=,3 well

with its counterpart =<0?,3. Otherwise, the assignment is
rejected.

3.3.3 Calculation of the Translation

Once a valid assignment and rotation between three
orthogonal planes of scan and map has been found, the
translation can be determined. The rotated scan planes are
approximately parallel to those in the map. Thus, we find
the translation as the mean distance of the plane centroids
2map, 2scan as (2map − 2scan) · =map.

3.3.4 Cost function

After determining the transformation between scan and
model, we calculate a cost of the assignment. For this
purpose, the translation error (2map − 2scan) · =map between
all scan and map planes is considered. We match planes
between scan and map by the minimum error. If no cor-
responding model plane is found for a scan plane, it’s
translation error is set to a fixed penalty. Finally, all er-
rors of the individual scan planes are summarized into the
overall assignment cost �� (Fig. 2 and Fig. 3).

Initialize �� = 0, X = 0.8, penalty = 20 m
for 8 ∈ 1, ..., #B20= : �� += (3){
min∀ 9∈�8 | (2B20=,8 − 2<0?, 9 ) · =<0?, 9 |, if | �8 |> 0
penalty, else

Figure 2. Correct
��: 0.3 m

Figure 3. Incorrect
��: 14.5 m

The values of X and penalty were chosen based on a se-
ries of experiments. �8 is the set of all map planes 9 which
have a similar plane normal to scan plane 8 (i.e. as in 3.3.2)
and on which the projection of 2B20=,8 is within the known
boundaries, except for 8 in the group of 3 reference planes
that were used to determine the transformation and which
therefore have a well-defined corresponding map plane.
Finally, the algorithm outputs the transformation with the
lowest cost. As the alignment from the plane matching
phase is calculated based on groups of 3 planes and does
not optimize over all the data available, the transformation
yielded from our PRRUS variant can be further refined by
ICP alignment after the global localisation.

4 Evaluation
Weperformmultiple experiments to validate themethod

for single-shot global localization. An ablation study of the
presented algorithm on simulated data in several different
environments validates our design choices. Finally, we
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quantitatively and qualitatively evaluate the system in real-
world experiments on a mobile robotic platform.

4.1 Experimental data

For quantitative evaluation, we generate simulated Li-
DAR data of various configuration. The model data is
taken from real-world 3D building mesh models, i.e., a
large parking garage of ∼ 62 × 16 × 3 m (Fig. 4(a)), an
open-plan office space of ∼ 14 × 14 × 3 m (Fig. 4(b)),
a utility building of ∼ 13 × 4 × 3 m (Fig. 4(c)) and a
synthetic object called Construct which consists of three
stacked cuboids of ∼ 18 × 9 × 9 m (Fig. 4(d)). The sim-
ulated LiDAR data is generated by sampling poses inside
these models and then ray casting beams from this pose
in different patterns analogous to real multi-beam sensors,
e.g., a 16 beam LiDAR with an opening angle of 30 de-
grees. Since the LiDAR used in the real measurements
had an inaccuracy in the range-bearing of ±2cm, we add
Gaussian noise with a standard deviation of 0.01 in the
same direction. Furthermore, we gathered data with a real
robotic platform [26] equipped with a Robosense RS-16
LiDAR sensor. The robot is deployed in the parking garage
and the utility building. The ground-truth position of the
robot is trackedwith aMultistation providingmm-accurate
measurements. Note that it is not possible to resolve the
ground-truth orientation of the robot with this sensor. In
contrast to the simulated environments, the real data also
contains both small and large clutter objects and dynamic
obstacles that are not mapped in the models.

(a) Garage (b) Open-plan Office

(c) Utility building (d) Construct
Figure 4. Overview of the building models.

4.2 Plane Extraction

Firstly, we perform an ablation study on the plane extrac-
tion method. Using a semi-automatic method, we create
a data set of 30 simulated 16 beam LiDAR scans taken

Figure 5. Comparison of different plane extraction
methods on simulated data (top row) and real LiDAR
scans (bottom row).

method clutter-free cluttered time [ms]
RANSAC 0.87 0.76 3.0625
RG 0.84 0.76 96.9688
RHT Ball Acc. 0.91 0.87 270.469
RHT Array Acc. 0.90 0.86 353.938

Table 1. Quantitative comparison of plane extraction
methods.

from different positions in the garage map and a matching
ground truth regarding the contained planes. In addition,
three pillars and a mesh of an excavator are added in an-
other set of experiments to assess the effects of clutter on
the differentmethods. We compare array and ball accumu-
lator for the RHT. Alternatively, we test a RANSAC-based
approach and a region growing algorithm [28]. Quantita-
tive results are reported in Table 1 and examples in Fig.
5. The fractional numbers correspond to the average of
the correctly detected planes divided by the planes con-
tained in the individual LiDAR scans. The results suggest
that PCL RANSAC is the fastest algorithm. However, the
measurements indicate that it reacts more sensitively to
clutter and Fig. 5 also reveals bad performance on the real
data. CGAL Region Growing produces better results in
real data, but the method also finds fewer planes in case
that clutter artifacts were not removed. Our experiments
on the full localisation pipeline will show that RHT yield
the best results on real data due to lower sensitivity to noise
and clutter. Similar observations were reported in [22].

4.3 Full Localisation

We compare the different localisation methods based
on accuracy � and true positive rate )%' of the yielded
poses. We count as true positives all poses within 2 meters
translation and 20 degrees rotation of the ground truth,
if orientation is available. Higher errors are counted as
false negatives and those scans where the algorithm re-
turned that it cannot find a corresponding transformation
are counted as false positives.

)%' =
)%

)% + �# � =
)% + )# (= 0)

)% + )# (= 0) + �% + �# (4)
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1000 beam rand 16 beam rand 16 beam gr 16 beam gr cluttered
method Garage Office Garage Office Utility Garage noise-free with noise
GoICP 4 / 4 7 / 7 2 / 2 14 / 14 0 / 0 4 / 4 - / - - / -
3D SHOT 0 / 0 0 / 0 0 / 0 0 / 0 1 / 1 0 / 0 - / - - / -
PRRUS RANSAC 90 / 89 67 / 52 76 / 54 93 / 92 93 / 78 86 / 83 63 / 54 59 / 48
PRRUS RG 96 / 96 55 / 31 56 / 26 90 / 82 87 / 82 91 / 86 79 / 59 76 / 56
PRRUS RHT array 89 / 61 68 / 53 78 / 50 97 / 95 88 / 84 97 / 95 85 / 78 86 / 81
PRRUS RHT ball 88 / 64 61 / 48 81 / 49 94 / 94 85 / 82 96 / 96 85 / 79 85 / 81

Table 2. Localisation results ()%' / �) with different simulated LiDARs. LiDARs are simulated with different
beam numbers and in either uniformly random (rand) sampled poses or poses simulating a ground robot (gr).

4.3.1 Simulated Data

We simulate LiDAR scans in a range of different con-
figurations to evaluate the dependency of methods with
respect to the density of the scans and the configuration
with respect to the environment. The simulated scans do
not contain random clutter or occlusions, but are gener-
ated directly from the building meshes. We test two Li-
DAR settings, a 16 beam LiDAR with 30◦ opening angle
replicating the sensor used on the real robot and a dense
1000 beam LiDAR with even distribution of the beams
over a full 180 degree opening angle. We test the different
variants for 300 samples each. Our results are reported
in table 2. We find a clear dependence between different
plane extraction methods and LiDAR configuration. For
GoICP and the 3D descriptor, we in general found very
poor performance over all settings. Comparing the dif-
ferent LiDAR variants, we found that a randomly posed
16 beamLiDAR often produces ambiguous measurements
that fit well to many different locations, impacting the per-
formance of all methods. This is also illustrated in Fig. 7.
Between the plane extraction variants, we find that while
RHT provides less accurate plane parameters due to bin
discretization, the localisation results of sparse 16 beam
LiDAR scans, which is our target sensor, are better with
this method. We also can observe an increased resistance
of the RHT pipeline with respect to noise and clutter, in
the form of a excavator and room pillars.

4.3.2 Registration of sampled point-clouds

In order to investigate the poor performance of GoICP
above, we construct a less realistic experiment that may be
better suited for classical 3D registration, to confirm that
the poor performance is related to the characteristics of
our robotic application. We run tests on the Construct ob-
ject shown in Fig. 4(d) and do not simulate LiDAR scans
but evaluate the registration of a uniformly sampled point-
cloud against themesh. We test themethods over randomly
sampled transformations as before (Fig. 6). GoICP con-
vinces in this test series by a significantly lower registration
error and is able to find the desired transformation every
time. Our PRRUS-based methods is less accurate, but can
also coarsely localise nearly all poses. 3D descriptor based

localisation also fails for these more dense point-clouds,
indicating that building models do not contain rich enough
information for such descriptors. Fig. 6 shows the accuracy
gained through the ICP refinement step, as reported above
for PRRUS with RHT. Yet, we observe a large gap in the
registration error between GoICP and our ICP refinement.
Since there is no algorithmical difference, but different im-
plementations, we conclude that the PRRUS registration
errors could be further improved by fine-tuning of the used
ICP implementation.

10 5 10 4 10 3 10 2 10 1 100

Distance to True Pose [m]

0.0
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0.6
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1.0
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cu

ra
cy

GoICP
PRRUS region growing
PRRUS RANSAC
PRRUS RHT array

PRRUS RHT ball
PRRUS RHT ball without ICP
3D Descriptor SHOT

Figure 6. Accuracies of the different methods on the
Map Construct.

(a) PRRUS finds a wrong transfor-
mation

(b) PRRUS is not able to make an
estimation

Figure 7. Examples of failure of PRRUS

4.4 Robotic Experiments in Cluttered Environments

Finally, we deploy a wheeled robotic platform in the
Utility and Garage buildings and take scans at various lo-
cations. The correctness of the obtained transformations
depends on the position of the LiDAR system as can be
seen in Fig.8. PRRUS offers a fast algorithm to perform
the plane matching, but it is highly dependent on the plane
extraction and the number of planes contained in the scan
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method Utility Garage runtime
GoICP 0 / 0 0 / 0 12188
3D SHOT 1 / 2 2 / 2 405
PRRUS RANSAC 10 / 2 25 / 7 66
PRRUS RG 50 / 48 68 / 68 180
PRRUS RHT array 90 / 57 79 / 46 476
PRRUS RHT ball 77 / 77 75 / 57 387

Table 3. Localisation results ()%' / �) for 16 beam
LiDAR scans from the robotic platform, captured in
cluttered environments. The runtime was averaged
over all scans from the Garage and is given in ms.

and map. In general, PRRUS fails if not enough planes
could be detected to determine a unique pose. The PRRUS
version with the RHT plane extraction yields the best re-
sults. The version with the array accumulator on both
maps delivers higher values in the )%' and the ball accu-
mulator in the �, which stems from the RHT version with
array accumulator fragmenting the ground plane such that
PRRUS cannot find an orthogonal set and does return an
"unable to detect" message. The PRRUS version with the
RANSAC plane extraction delivers lower values in � and
)%' for the real data. GoICP not only required signifi-
cantly more time, but also resulted in wrong localizations.
Similarly, the localization performance of the 3D Descrip-
tor approach is low.

(a) Utility building (b) Garage

Figure 8. Spatial distribution of localisation errors
for our RHT ball based method [m].

5 Conclusion
This work proposes a new algorithm for global localisa-

tion of robots in mesh based maps of indoor environments.
In our evaluation, established point-cloud based methods
failed due to the sparse LiDAR scans and clutter even after
filtering. Our proposed method based on plane extraction
and PRRUS on the other hand achieved high)%' in local-
isation. The different plane extraction algorithms showed
varying advantages and disadvantages, in either run time,
precision or clutter-sensitivity. Overall, we found RHT
a suitable method to detect static and coarse structures
from scans, although other methods were more precise in
clutter-free scenarios. Building mesh model based locali-
sation has a huge potential for indoor robotics due to the
large availability of floorplans, small memory footprint
of the map, and because it is an intuitive representation

for operators. With the proposed algorithms, we achieved
good performance in simulation and real-world experi-
ments, with and without clutter, and in multiple building
meshes.
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